Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Andrey A. Yakovenko* and Fedor M. Dolgushin

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov St. 28, Moscow 119991, Russian Federation

Correspondence e-mail:
aaylev@xrlab.ineos.ac.ru

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.042$
$w R$ factor $=0.084$
Data-to-parameter ratio $=12.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Redetermination of the Diels-Alder diadduct of 1,4-benzoquinone and cyclopentadiene: 1,4:5,8-di-methano-1,1a,4,4a,5,5a,8,8a-octahydroanthracene-9,10-dione

The title diadduct, $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}$, has been redetermined by X-ray diffraction methods at 120 K . In this work, we report more exact values of bond and angles.

Comment

The Diels-Alder reaction between 1,4-benzoquinone and two equivalents of cyclopentadiene gives the title diadduct 1,4:5,8-dimethano-1,1a,4,4a,5,5a,8,8a-octahydroanthracene-9,10-dione, (I) (Fig. 1 and Table 1).

(I)

The structure of (I) was first reported in 1974 but with a space-group ambiguity (Brown et al., 1974). The corrected room-temperature structure was reported in 1999 (Gunes et al., 1999). To define more precisely the molecular structure of (I), we have studied the structure at low temperature, viz. 120 K . The analysis confirms that the stereochemistry is endo,cis,anti,cis,endo.

Despite of the slight change in the deviations of the bond lengths and angles $\left(0.001 \AA\right.$ for bond lengths and 0.01° for angles), the bond lengths and angles themselves have changed dramatically. For example, in our work, the $\mathrm{C}=\mathrm{O}$ distances are in the range 1.2211 (16)-1.2189 (16) \AA and the $\mathrm{C}-\mathrm{C}$ distances are in the range $1.5115(19)-1.5798(19) \AA$, while in Gunes et al. (1999), the $\mathrm{C}=\mathrm{O}$ is 1.215 (2) \AA and the $\mathrm{C}-\mathrm{C}$ distances are in the range 1.499 (3) -1.579 (3) \AA. The increase in distances is connected with a significant reduction in the atomic anisotropic displacement parameters and the measurement of the present data at 120 K . It results in a reduction of the amplitudes of thermal vibration of atoms and their localization. Accordingly, the atomic coordinates have much smaller deviations than in the previous work. Thus, in our work, more exact values of bonds lengths and angles are presented.

Experimental

The title compound was prepared according to the known procedure of Brown et al. (1974) (see scheme). Suitable single crystals were

Figure 1
A view of (I), showing the atom labeling and displacement ellipsoids at the 50% probability level.
obtained by isothermic evaporation of its solution in ethanol at room temperature.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}$
$M_{r}=240.29$
Monoclinic, $P 2_{1} / n$
$a=11.909$ (4) A
$b=6.166$ (2) \AA
$c=16.937$ (6) \AA
$\beta=110.278$ (7) ${ }^{\circ}$
$V=1166.6(7) \AA^{3}$
$Z=4$
$D_{x}=1.368 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 944 reflections
$\theta=2.8-29.9^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Prism, colorless
$0.4 \times 0.3 \times 0.2 \mathrm{~mm}$

Data collection

Bruker SMART 1000 CCD area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1998)
$T_{\text {min }}=0.964, T_{\text {max }}=0.981$
7972 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.084$
$S=1.00$
2922 reflections
227 parameters
All H-atom parameters refined

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

O2-C11	$1.2211(16)$	C10-C11	$1.5183(18)$
O1-C4	$1.2189(16)$	C11-C12	$1.5115(19)$
C5-C4	$1.5135(19)$	C12-C13	$1.5610(19)$
C5-C10	$1.5586(18)$	C1-C14	$1.338(2)$
C5-C6	$1.5798(19)$	C1-C2	$1.520(2)$
C3-C4	$1.5133(18)$	C8-C7	$1.336(2)$
C3-C2	$1.5621(19)$	C2-C15	$1.545(2)$
C3-C12	$1.5650(18)$	C14-C13	$1.522(2)$
C9-C8	$1.515(2)$	C6-C7	$1.513(2)$
C9-C16	$1.5449(19)$	C6-C16	$1.542(2)$
C9-C10	$1.5794(19)$	C13-C15	$1.540(2)$
C4-C5-C10	$116.42(10)$	C14-C1-C2	$107.54(13)$
C4-C5-C6	$114.05(11)$	C7-C8-C9	$107.23(12)$
C10-C5-C6	$102.59(10)$	O1-C4-C3	$121.25(12)$
C4-C3-C2	$113.46(11)$	O1-C4-C5	$119.97(12)$
C4-C3-C12	$116.03(11)$	C3-C4-C5	$118.77(11)$
C2-C3-C12	$102.91(10)$	C1-C2-C15	$100.15(12)$
C8-C9-C16	$100.49(11)$	C1-C2-C3	$106.04(11)$
C8-C9-C10	$107.75(11)$	C15-C2-C3	$100.15(11)$
C16-C9-C10	$99.22(10)$	C1-C14-C13	$107.53(13)$
C11-C10-C5	$116.39(11)$	C7-C6-C16	$100.29(11)$
C11-C10-C9	$113.66(11)$	C7-C6-C5	$107.92(11)$
C5-C10-C9	$102.70(10)$	C16-C6-C5	$99.15(11)$
O2-C11-C12	$121.01(12)$	C8-C7-C6	$107.91(13)$
O2-C11-C10	$119.99(12)$	C6-C16-C9	$93.60(10)$
C12-C11-C10	$118.97(11)$	C14-C13-C15	$100.33(12)$
C11-C12-C13	$113.96(11)$	C14-C13-C12	$106.15(11)$
C11-C12-C3	$116.64(10)$	C15-C13-C12	$100.26(11)$
C13-C12-C3	$102.62(11)$	C13-C15-C2	$93.94(11)$

The H atoms were refined with individual isotropic displacement parameters; the range of $\mathrm{C}-\mathrm{H}$ was 0.964 (17) -1.023 (17) \AA.

Data collection: SMART (Bruker, 1998); cell refinement: SAINTPlus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: $S H E L X T L$; molecular graphics: $S H E L X T L$; software used to prepare material for publication: SHELXTL.

This work was supported by the Russian Foundation for Basic Research (project No. 04-03-32371).

References

Brown, R., Bruce, J. M., Hudson, D. W. \& Mills, O. S. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 132-135.
Bruker (1998). SAINT-Plus (Version 6.01) and SMART (Version 5.059). Bruker AXS Inc., Madison, Wisconsin, USA.
Gunes, B., Soylu, H., Ozbey, S. \& Aydin, A. (1999). Z. Kristallogr. New Cryst. Struct. 214, 29-30.
Sheldrick, G. M. (1998). SADABS (Version 2.01) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.

